

No.

1.1.1.1

#FuelYourPassion

Nicki De Villiers (RD)

Registered Dietitian with a

Special Interest in Sports Nutrition

Optimising Power To Weight Ratio Without Compromising Nutrition

Nicki de Villiers

With The End In Mind

Dietary considerations to achieve high quality weight loss recognising the dynamic energy balance

Power To Weight Ratio: What Is In It For The Athlete?

- Determinant of performance:
 - Where athletes work against gravity, e.g. running
- High power to weight ratio:
 - More power with every action
 - Run, swim and cycle faster and more efficiently
 - 0.45 kg excess weight requires ~ 2 watts to pull up a hill
 - 3 kg of fat = \sim 3 sec/km on a climb
 - \downarrow 4.5 kg \rightarrow climbing 7-10 % faster

Changing Power to Weight Ratio

To improve power to weight ratio:

- \mathbf{O} \uparrow power output while keeping their weight constant
- \bigcirc keep the power output constant while \downarrow weight
- \bigcirc \uparrow power output while also \downarrow weight

Weight Loss Is Not Simple

Just increase energy expenditure and/or reduce energy intake

Getting It Wrong

- Energy availability (EA) = Energy intake (EI) exercise energy expenditure (EEE) in relation to fat-free mass (FFM)
- Energy expenditure associated with prescribed training load is already committed
- Energy mismatch (i.e., initial energy deficit) \rightarrow adjustment in expenditure on the non-exercise body functions

Short Period (5 days) of EA <30 kcal/kg FFM/day = Severe Endocrine and Metabolic Alterations

#FuelYourPassion

Classification on Energy Availability

			High EA: healthy weight gain or weight maintenance Adequate energy for physiological functions
	> 45 kcal/kg FFM/d	Optimal Energy Availability	Subclinical LEA: tolerated for short periods during well- constructed weight-loss program Clinical LEA: health implications with impairment of body systems including training adaptation and performance
	30 kcal/kg FFM/d	Minimum Required for Health Borderline Energy Deficient	
	20 kcal/kg FFM/d	Moderately Energy Deficient	
	10 kcal/kg FFM/d	Severely Energy Deficient	

Severe energy restriction to decrease weight will negatively affect performance and health

maintenance

THE SRO YOGHURT FROM SCIENCE TO PERFORMANCE

Achieving **HEALTHY** Body Weight

#FuelYourPassion

- O Minimises health risks and promotes good eating habits
- O Allowing for optimal training and performance
- Consideration for genetic makeup
- O Appropriate for age and physical development
- Maintained without constant dieting or restriction
- **O** Regain some weight during off-season

6%

Getting It Right: Fat Mass vs Lean Body Mass

Hypocaloric dieting $\rightarrow \downarrow$ fat mass and \downarrow lean body mass O How to minimise \downarrow lean body mass while maximising fat loss 0

High Quality Weight Loss

Diet-induced weight loss with slow ratio of skeletal muscle to 0

fat mass loss

Minimum healthy body fat 0

14% Individualised and Structured

Lean Body Mass

- O Metabolic function
- Muscle protein synthesis (MPS) vs muscle protein breakdown (MPB)

• Effects of :

- Fasting $\rightarrow \downarrow$ muscle protein synthesis + \uparrow muscle protein breakdown
- Essential amino acids $\rightarrow \uparrow$ muscle protein synthesis
- Leucine $\rightarrow \uparrow$ muscle protein synthesis
- Protein $\rightarrow \uparrow$ insulin $\rightarrow \downarrow$ muscle protein breakdown
- Energy restriction $\rightarrow \downarrow$ muscle protein synthesis
- Resistance exercise (and aerobic exercise) $\rightarrow \uparrow$ MPS and \uparrow MPB
 - \rightarrow Sensitises skeletal muscle to anabolic effects of protein
 - \rightarrow synergistic rise in MPS \rightarrow gain of $\$ lean body mass

Energy Restriction & Lean Body Mass

• Energy restriction \rightarrow cell is forced to prioritise energy demands $\rightarrow \downarrow$ muscle protein synthesis

#FuelYourPassion

- Meta-analysis: ~25% of mass lost during weight loss during energy restriction is *fat free mass*
- Muscle protein synthesis response may adapt to more prolonged weight loss

Weight Loss: Phases Instead of as a Continuous Process

- Early phase (days to a few weeks): rapid weight loss with more pronounced lean body mass loss
- Plateau is reached as weight loss progresses
- Adaptations to new "steady-state" as weight loss progresses

Every-Other-Day Feeding Caloric Restriction Interventions

12 healthy males, 18–50 years old, physical activity >3 but <6 days per week

Caloric restriction (33 %) on 3 alternate days / week for 6 weeks

 \bigcirc \downarrow body weight by 4.4% (0.9 kg/week)

- $\mathbf{O} \downarrow \text{fat mass by } 15.1\%$
- \bigcirc \downarrow lean body mass by 2.91%
- total body water (69% of total body weight loss) extracellular ↑ intracellular ↓
- Significantly \downarrow daily micronutrient intake to 90% of RDA values

 \rightarrow micronutrient supplement should also be considered

Energy Restrictions: Two Groups Weight Lifters

Normal diet: 3 000 – 3 500 calories per day Restrict energy intake with 40 % for two weeks

Group 2: 2.3 g protein/kg/day (~ 36% of total calories) Both groups lost the same amount of fat

Lost more total weight Lost an average of 1.5 k g muscle mass

Caloric Restriction & Protein Manipulation

- 40% energy restricted diet
- Relatively trained but overweight young men
- Resistance exercise + high intensity interval training program (6 days/week)
 - \rightarrow 1.2 g protein/kg/day \rightarrow maintained lean body mass and -3.5 \pm 1.4 kg fat mass in 4 weeks
 - \rightarrow 2.4 g protein/kg/day \rightarrow gained lean body mass and -4.8 ± 1.6 kg fat mass in 4 weeks

(Longland et al., 2016)

Lean body mass loss could be avoided by \uparrow protein intake

Protein: How Much? What? When?

- Protein during weight loss in athletes
 - 📫 1.6–2.4 g protein/kg/day
- Energy balance:
 - ~0.24 g protein/kg at each meal
- Weight maintenance or weight gain:
 - \sim 0.3–0.4 g protein/kg per meal

Mixed meals or energy deficit / weight loss:

Higher protein intakes and slower rates of weight loss promote LBM retention during energy restriction

Protein: How Much? What? When?

- Higher-quality proteins \rightarrow potent stimulators of MPS \rightarrow *leucine*
- Young male novice weight lifters: Energy balance + nonfat milk following resistance exercise (12 w)
 - \rightarrow greater gains in LBM and greater \downarrow in FM compared to soy protein

Hartman et al., 2007

• Meta-analyses: \uparrow dairy consumption during energy restriction \rightarrow superior LBM retention and FM loss

Abargouei et al., 2012; Chen et al., 2012

Protein: How Much? What? When?

Throughout the day

 \rightarrow 20 g protein every 3 hours

After exercise

Essential amino acids (EAAs) ↓ muscle protein

breakdown

■ Endurance athletes → ↑ mitochondrial proteins

During exercise

Not necessary if sufficient daily protein

Before sleep

Stimulate MPS and improved overnight protein

balance \rightarrow 40 g protein

Something Needs To Give: Carbohydrate Manipulation

C Low CHO (\leq 35–40% energy) \rightarrow \uparrow weight and fat loss

 \rightarrow Associated with greater FFM loss

 \rightarrow Influence on sports performance and training ability

CHO: important in maintaining athletic performance

 \sim 5–7 g/kg/day for modest (likely aerobic) exercise (\sim 1 hr/day)

Ouring dietary energy restriction with high protein intake \rightarrow 3g CHO/kg/day

In Summary : Quality Weight Loss

- O Dynamic energy balance approach to predict weight loss based on dietary and exercise changes
- Moderate energy deficit (-500 kcal)
- Higher protein intake when energy is restricted: ~1.8–2.7 g/kg/d (or ~2.3–3.1 g/kg/FFM)
 - post-exercise consumption ~0.25–0.3g/kg
- high leucine content and rapid digestion kinetics (i.e. whey protein or skimmed milk)
- Time food intake around exercise and throughout the day
- O Monitor consumption of energy dense beverages

END THANK YOU